Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Invest Dermatol ; 143(10): 2019-2029.e3, 2023 10.
Article En | MEDLINE | ID: mdl-37142186

cAMP signaling is a well-established regulator of melanin synthesis. Two distinct cAMP signaling pathways-the transmembrane adenylyl cyclase pathway, activated primarily by the MC1R, and the soluble adenylyl cyclase (sAC) pathway-affect melanin synthesis. The sAC pathway affects melanin synthesis by regulating melanosomal pH, and the MC1R pathway affects melanin synthesis by regulating gene expression and post-translational modifications. However, whether MC1R genotype affects melanosomal pH is poorly understood. We now report that loss of function MC1R does not affect melanosomal pH. Thus, sAC signaling appears to be the only cAMP signaling pathway that regulates melanosomal pH. We also addressed whether MC1R genotype affects sAC-dependent regulation of melanin synthesis. Although sAC loss of function in wild-type human melanocytes stimulates melanin synthesis, sAC loss of function has no effect on melanin synthesis in MC1R nonfunctional human and mouse melanocytes or skin and hair melanin in e/e mice. Interestingly, activation of transmembrane adenylyl cyclases, which increases epidermal eumelanin synthesis in e/e mice, leads to enhanced production of eumelanin in sAC-knockout mice relative to that in sAC wild-type mice. Thus, MC1R- and sAC-dependent cAMP signaling pathways define distinct mechanisms that regulate melanosomal pH and pigmentation.


Adenylyl Cyclases , Melanins , Mice , Animals , Humans , Melanins/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Pigmentation , Melanocytes/metabolism , Signal Transduction , Mice, Knockout , Hydrogen-Ion Concentration
2.
Exp Dermatol ; 32(7): 1051-1062, 2023 07.
Article En | MEDLINE | ID: mdl-37039485

Cyclic AMP (cAMP) has a key role in psoriasis pathogenesis, as indicated by the therapeutic efficacy of phosphodiesterase inhibitors that prevent the degradation of cAMP. However, whether soluble adenylate cyclase (sAC) (encoded by the ADCY10 gene), which is an important source for cAMP, is involved in Th17 cell-mediated inflammation or could be an alternative therapeutic target in psoriasis is unknown. We have utilized the imiquimod model of murine psoriasiform dermatitis to address this question. Adcy10-/- mice had reduced erythema, scaling and swelling in the skin and reduced CD4+ IL17+ cell numbers in the draining lymph nodes, compared with wild-type mice after induction of psoriasiform dermatitis with imiquimod. Keratinocyte-specific knock out of Adcy10 had no effect on imiquimod-induced ear swelling suggesting keratinocyte sAC has no role in imiquimod-induced inflammation. During Th17 polarization in vitro, naive T cells from Adcy10-/- mice exhibited reduced IL17 secretion and IL-17+ T-cell proliferation suggesting that differentiation into Th17 cells is suppressed without sAC activity. Interestingly, loss of sAC did not impact the expression of Th17 lineage-defining transcription factors (such as Rorc and cMaf) but rather was required for CREB-dependent gene expression, which is known to support Th17 cell gene expression. Finally, topical application of small molecule sAC inhibitors (sACi) reduced imiquimod-induced psoriasiform dermatitis and Il17 gene expression in the skin. Collectively, these findings demonstrate that sAC is important for psoriasiform dermatitis in mouse skin. sACi may provide an alternative class of topical therapeutics for Th17-mediated skin diseases.


Adenylyl Cyclases , Eczema , Psoriasis , Animals , Mice , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Disease Models, Animal , Eczema/pathology , Imiquimod/adverse effects , Inflammation/drug therapy , Inflammation/pathology , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Skin/metabolism , Th17 Cells/metabolism
3.
Front Oncol ; 12: 887770, 2022.
Article En | MEDLINE | ID: mdl-36483028

Melanin is synthesized in melanocytes and is transferred into keratinocytes to block the effects of ultraviolet (UV) radiation and is important for preventing skin cancers including melanoma. However, it is known that after melanomagenesis and melanoma invasion or metastases, melanin synthesis still occurs. Since melanoma cells are no longer involved in the sun tanning process, it is unclear why melanocytes would maintain melanin synthesis after melanomagenesis has occurred. Aside from blocking UV-induced DNA mutation, melanin may provide other metabolic functions that could benefit melanoma. In addition, studies have suggested that there may be a selective advantage to melanin synthesis in melanoma; however, mechanisms regulating melanin synthesis outside the epidermis or hair follicle is unknown. We will discuss how melanosomal pH controls melanin synthesis in melanocytes and how melanosomal pH control of melanin synthesis might function in melanoma. We will also discuss potential reasons why melanin synthesis might be beneficial for melanoma cellular metabolism and provide a rationale for why melanin synthesis is not limited to benign melanocytes.

4.
Cell Rep ; 40(13): 111412, 2022 09 27.
Article En | MEDLINE | ID: mdl-36170819

Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.


Cyclic AMP , Neoplasms , Humans , Cell Line , Cyclic AMP/metabolism , Hippo Signaling Pathway , Phosphorylation , Protein Serine-Threonine Kinases , Serine/metabolism
...